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Received 27 September 1994 

Abstract We discuss the motion of a quantum-mechanical system constrained to move on an 
arbitrary submanifold M of its wnligtuation space R" by a real confining potential. A wmplete 
perturbative expansion for the Hamiltonian describing the dynamics of the system is obtained 
in terms of the quantities characterizing the intrinsic and atrhsic geometric properties of the 
consmint's surface M. In accordance with Heisenberg's principle the mh-o rde r  term of the 
expansion represents stmng fluctuations of the system in directions n o d  to M, whereas the 
first-order term is naturally interpreted 85 the Hamiltonian describing the effective dynamics 
along the conshaint's surface. The effective motion on M results in coupling with Abclidnon- 
Abelim gauge fie@ and quantum potentials. The rest of the pelfurbative expansion allows 
one to take into account further ioteractions between n o d  and effective degrees of freedom. 
As a concrete example we consider the dynamics of an electron conswined on a circle by a 
hypothetical semiconductor device. Dunham's expansion for the rotovibrational energy of a 
ripd diatom is also obtained. 

1. Introduction 

The quantum-mechanical description of constrained system is extremely important in 
physics and since the early days of quantum mechanics several techniques have been 
developed to deal with this matter. A fundamental contribution was made by Dirac [I]. 
His idea, geometrical in nature, consists of removing the redundant degrees of freedom by 
the consinmion of a consistent Hamiltonian formalism for the constrained classical theory 
and proceeding then to its quantization. Other noteworthy approaches have been developed 
by Schwinger, Peierls by using variational arguments and by De Witt, Faddeev, Popov 
by means of a Lagrangian formalism and path integral techniques. The common feature 
to all these methods is that the reduction of the dynamics is studied without considering 
the physical mechanism, if there is one, producing the confinement to the constraint's 
surface. Nevertheless, in the study of a constrained quantum-mechanical system we have 
to distinguish between the kind of constraints which may appear in the formulation of a 
dynamical theory, which we will refer to as fonnal constraints, and the constraints which 
may be produced by a real potential confining the motion of the system to a submanifold 
of its configuration space, which we will call real constrains. Concrete examples of the 
latter are electrons constrained to move on a plane or on a line by a semiconductor device 
of the same kind of that used in the quantum Hall effect, or a rigid molecule in which the 
Bom-Oppenheimer potential behaves as a potential confining the motion from the nuclear 
configuration space R3N to the submanifold SO(3). Whereas the method of Dirac and 
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followers is probably indispensable for the treatment of formal constraints, ordinary quantum 
mechanics is sufficient to give an accurate description of real constraints. Furthermore, the 
techniques developed for formal constrains turn out to be inadequate for the treatment 
of rea6 constmints, introducing non-physical ambiguities and causing some effects to be 
ignored. 

Let us consider, for example, a particle constrained to move on an arbitrary surface 
C embedded in the three-dimensional Euclidean space R3. The reduction of the classical 
theory is straightforward. Introducing coordinates x1,x2 parametrizing the surface and 
denoting the metric induced on from R3 by g,,, p, U = 1,2, the system is described 
by the Lagrangian L = ~g,,xfii”. Defining the generalized momenta p ,  = af./aiP, we 
obtain the Hamiltonian X = igrvp , ,pv ,  where g”” denotes the inverse of the metric. The 
quantization of X contains ordering ambiguities which are not completely removed by the 
required covariance of the theory. As was first observed by De Witt 121, in constructing 
the Hamiltonian operator we are free to add to minus one half the Laplacian A a term 
proportional to the scalar curvature R of the surface, 

K = - ; A + ~ R .  (1) 

Different quantization schemes produces different values for the constant a. a may not be 
determined unambiguously, as it depends essentially on a choice of ordering. On the other 
hand, the reduction of the motion of a particle to a surface is by no means an academic 
problem. Devices producing the confinement of electrons on a plane are widely studied in 
physics [3], and we may consider using the same techniques to constrain a particle on an 
arbitrary surface Z. How then do we determine then the constant a? In addressing the 
solution of the problem, it is convenient to abandon the formal treatment of the constraint, 
thinking instead of the physical mechanism producing the confinement of the particle on 
the surface. The analysis of devices used in the quantum Hall effect suggests that the 
confinement is produced by a potential presenting a deep minimum relative to the constraint 
surface and depending only on the coordinate normal to it [GI. Proceeding along these 
lines, Jensen and Koppe [7] first gave a realistic description of the motion of a particle 
on a surface embedded in R3. In accordance with Heisenberg’s principle, the confinement 
causes the particle to fluctuate very strongly in the direction normal to the surface so that 
the specmm of the system is described to a first approximation by that of the confining 
potential. Relative to each level the effective Hamiltonian describing the motion along the 
surface may then be unambiguously obtained as (see 171 and the discussion below) 

, 

X = - L A + L R - . ?  2 4 8 5  2 (2)  

where is the extrinsic mean curvature of the surface C. The analysis has to be completed 
by considering the interactions between the degrees of freedom normal to the surface and 
those parallel to it. The case of a wire embedded in R3 has also been considered by many 
authors 181. 

From this simple example we leam that in the treatment of a real constraint we cannot 
disregard the physical mechanism producing the confinement to the constraint’s surface. A 
formal treatment of the constraint produces the appearance of unphysical ambiguities and 
neglects contributions connected with the extrinsic geometrical properties of the constraint’s 
surface. 

In this paper we present a complete perturbative description of a system constrained 
to move on a submanifold of its configuration space R” by a confining potential Vc. 
Generalizing the example of the surface embedded in R3 we require V, to satisfy two 
very general conditions: 



Quantum mechanics with constraints 294 1 

(Cl) Vc presents a deep minimum relative to the constraint's surface, 
(C2) Vc depends only on coordinates normal to the constraint's surface. 

Adapting coordinates, to the constraint in section 2, a complete perturbative expansion 
for the Hamiltonian describing the motion of the system is obtained in section 3. In 
accordance with Heisenberg's principle, the zeroth-order term of the expansion takes into 
account the fluctuations of the system in the directions normal to the constraint's surface. 
The first-order term, already discussed in [5,6,9],  describes the effective constrained 
dynamics while the rest of the perturbative expansion describes the interactions between 
normal and effective degrees of freedom. The effective dynamics results in being coupled 
with Abeliadnon-Abelian gauge fields and quantum potentials induced by the intrinsic 
and extrinsic geometrical properties of the constraint's surface. This phenomenon very 
much resemble Berry's analysis of the adiabatic approximation [lo] and considering the 
reduction of motion to a submanifold M by means of a confining potential is an adiabatic 
approximation after all, the coordinates normal and tangential to the~constraint's surface 
being considered as fast and slow degrees of freedom. Nevertheless, the mechanism 
producing the coupling with gauge fields and quantum potentials in the discussion of a 
real constraint is different from that considered by Moody, Shapere and Wilczek [ l l ] ,  
Jackiw [12] and Berry [13]. In that context the embedding of the slow-coordinate space in 
the total configuration space is geometrically trivial, whereas this non-triviality lies at the 
heart of the mechanism appearing in the treatment of real constraints. 

We want to point gut that the constrained quantum dynamics is characterized by the 
whole perturbative expansion, the effective dynamics on the constraint surface representing 
only the leading term. In contrast to what happens in the classical description, the explicit 
form of the potential realizing the constraint leaves traces in the effective dynamics and in 
the spechum of the system and therefore may not be neglected. This is illustrated by two 
examples in sections 5 and 6. Section 7 contains our conclusions. 

2. Geometrical preliminaries 

In what follows we identify the constraint surface with a smooth m-dimensional submanifold 
M of the configuration space R". Denoting by Q, : M + R" the embedding of M in R" 
and by n ' ( x ) ,  n z ( x ) ,  . . . , nn-'"(x) a smooth assignment of (n - m) orthonormal vectors 
normal to M in every point x E M ,  an adapted-coordinateframe may be introduced by 
using coordinates x p ,  p = 1, . . . , m, on M ,  plus the distances y ' ,  i = m + 1, . . . , n, along 
the geodetics leaving M with speed n'. In a 'sufficently close' neighbourhood of M the 
frame [xp, y ' ;  p = 1, . . . , m, i = i = m + 1,. . . , n }  is well defined and its relation with 
the Cartesian coordinates T = (rl, . . . , r") of R" is given by 

T = + y 'n' (x@) .  (3) 
It is important to realize that the embedding of M in R" is completely characterized 

by the assignment of some tensorial quantities on M [14]. In an adapted-coordinate frame 
these may be easily constructed as follows: 

g,, = t ,  . t ,  
a;y = n' . a,t, 
A; = n' . a,nj 

induced metric (firstfundamental form) 
second fundamental form 
normal fundamental form 

where the t ,  = a,,@ denote the tangent vectors to M associated with the chosen coordinate 
frame and the dot denotes the standard scalar product in R". 
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The choice of an adapted-coordinate frame is obviously not unique. An arbitrary- 
coordinate transformation on M as well as a point-dependent rotation of the normal vectors 
n'(x)  transforms an adapted-coordinate frame into an adapted-coordinate frame. Whereas 
varying the choice of the coordinates x P  causes gPu, afv and A$ to transform as tensors of 
M, the variation of normal vectors n' (x )  by a rotation R"(x) makes ahv to transform as a 
SO(n - m) vector but A$ as a SO(n -m) gauge connection 

(4) A; - R ' k A p i I  + ~ i k a  R j k  

The normal fundamental form AX actually represents the connection induced by R" on the 
normal bundle of M, TM'. 

The metric G I J ,  I .  J = 1,. . . , n of R" in the adapted-coordinate frame [ x p ,  y'}  is 
written as 

I L '  

(5) 

where, introducing the matrix 7 by q t  = y'gp%b,, the matrix y may be written as 

(6) 
The determinant IGI o f G , ~  coincides with that of the matrix y ,  IyI, and the inverse of the 
metric tensor may be calculated as 

Yp" = g,(l- V X ( 1  - q);. 

3. The perturbative expansion 

We come now to the dynamical aspect of the problem. The quantization of the system is 
performed very easily and unambiguously in R", before considering the constraint. In a 
Cartesian-coordinate frame [r'; I = 1,. . . ,721. dynamics is described by 

(8) 
where VC is the potential realizing the constraint. N acts on wavefunctions I) E Lz(Rn) 
normalized with the condition 

(9) 

In an adapted-coordimtefme ( x P .  y'; f i  = 1, . . . , m, i = m + 1,. . . , n] the Hamiltonian 
(8) takes the form 

1 N = -,alal + vc 

j I@IZ dr" = 1. 

a1G1JIG11'2aj + Vc 1 N=-- 
21G1'fi 

and the normalization condition (9) trimforms to 

/ 1$[21G['/2 dx'" dy"-") = 1. (1 1 )  

Since we are looking for an effective dynamics on the submanifold M we find it natural 
to perform a similitude transformation in such a way that the wavefunctions are correctly 
normalized in L z ( M )  instead of L2(R"). The aim is achieved by 
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where Ig[ denotes the determinant of the metric g,, induced on 'M. Considering the 
explicit form (7) of the inverse metric G" and introducing 2, = a, + iA?Lij/Z, where 
Lij = -i(y'ZIj - y j & )  are the SO(n - m )  generators, the Hamiltonian (10) takes the quite 
complicated form 

At this point, and only at this point, the constraint is imposed by considering conditions 
C1 and C2. Condition C1 ensures that the potential VC may he replaced by its power 
expansion around the minimum y' = 0. Condition C2 states ka t  there exists an adapted- 
coordinate frame in which VC only depends on the normal coordinates ?. Without loss 
of generality the constant term of the expansion may be neglected and the quadratic term 
diagonalized by means of a point-independent rotation in the normal space 

(14) - 1 .z j z  i j k i  vc(Y) = -U1 Y + U i j k Y i Y j Y k + b i j k i Y Y  Y Y f'," . 
2 € 2  

The scale of the proper frequencies wi has been readsorbed in the dimensionless parameter 
e-'. The smaller E the deeper is the minimum of VC and the more the system is squeezed 
on the constraint's surface. 

The parameter E appears as a natural perturbative parameter in the theory and, rescaled 
the normal coordinates by y' + E'/'?, a perturbative theory may be set up by expanding 
the Hamiltonian (13) in powers of E 

E% = ~ ( 0 )  + E ~ ( U  + , 3 1 2 ~ W )  + E Z ~ ( 2 )  + . . . 
fE5/za j j~YiYiyk  f € 3 b ; j k r ) " y j ~ $  f .  . (15) 

The constants a i j k ,  biju, .: ., appearing in the expansion of the confining potential are such 
that the second, third and further terms of the right-hand side of (14) are small compared 
to the first term and in this sense are €-dependent. In practical applications they appear in 
the perturbative expansion as independent parameter so that, for example, ES/*ai j~y iy jyk  is 
not in general of order cS/', its magnitude depending on the explicit form of the potential 
Vc. The zeroth- and first-order terms of the expansion (15) has been extensively discussed 
in [5]. 

In accordance with Heisenberg principle the zeroth-order dynamics depends only on the 
normal degrees of freedom 

~ ( 0 )  = 4 (-aiai + , i zy iz)  (16) 

describing a system of (n - m) uncoupled harmonic oscillators with frequencies 
"+I , . . . , w". 

More surprising results follow from the analysis of the first-order term 

where the potential e(') may be expressed in terms of the intrinsic scalar curvature R and 
the extrinsic mean curvature 5 as 

Apart from the potential term e('), H ( ' )  is proportional to the Laplace operator on M 
coupled to the motion in normal directions by means of the minimal interaction with the 
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gauge field AiLi j /2 .  It is therefore resonable to expect that in a perturbative picture H(')  
describes the effective dynamics on M. This has  actually been found in 151. The surprising 
result, unexpected and unrecoverable by means of a formal treatment of constraints, is that 
the effective dynamics, is coupled with gauge fields and quantum potentials induced by 
the intrinsic and extrinsic geometrical properties of the constraint's surface. The physical 
relevance of such a geometry-induced dynamical shucture has recently been discussed in 161, 
showing how this phenomenon is observable in the effective rotational motion of some 
simple polyatomic molecules. 

Since we are interested in a realistic description of a constrained microscopic system we 
never consider the limit E + 0. E is a small but finite parameter, its magnitude depending 
on the characteristics of the system under consideration. It is therefore very important to 
know the explicit expression of further terms of the expansion (15) in order to predict the 
spechum of the system with adequate precision. 

To evaluate the explicit expression of the generic term of the expansion (15), we start 
by observing that the first and second terms of the Hamiltonian (13) may be rewritten solely 
in terms of yfi" and In 11 - 71 as 

1 
8.1 I%i- = -$;ai + {(a ia i in /~  - V I )  + $~,in11 -VI)(& In11 - VI) 1 -- 

21y1'14 IY1'I4 
and 

where, denoting by 0, the covariant derivative associated with the connection induced on 
M, 

(19) 
i 

= 0, + -A$Lij. 
2 

It is very convenient to introduce the matrices 

q$) = (N + l ) g P P Z y i l ~ ~ , n , g " ~ ~ .  . . Y (N 'ypNo*gn"" 'N (20) 

q$ = g p u .  The expansion in E of yfi" and In 11 - q [  may then be computed as 

The evaluation of the NI2-order term of the perturbative expansion (15) thus reduces to a 
matter of simple algebra, yielding 

H(Nlz)  = -&epqfl-z)?v + Q"P) (23) 

N 2, where the potentials Q(N/z)  may be written as 

~ ( ' 1  = %tr[ai~]tr[aiqi - $tr[aivaiqi 

~ " 1 2 )  ='+m[aiaiw[qaiqi - ; t r [qa iqa iq~-  ;w[+figp%q] 
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and for N > 4 

It is remarkable that the perturbative expansion of the Hamiltonian of the~system is 
completely written in terms of the induced metric g,,, the second fundamental form ahu, 
itsfirst,and second covariant derivative V,ak.. V e V p a ~ w  and the normal fundamental form 
A;. A; appears in the perturbative expansion only by means of the minimal coupling (19). 

4. Spectrum and effective dynamics 

To evaluate the spectrum of the system we now proceed by means of the standard Raleigb- 
Schrijdinger perturbation theory. We identify H(O) with the unperturbed Hamiltonian and 
the rest of expansion (15) with the perturbation Pc, 

E l i  = H") + ?<. (24) 
As was stated in the previous section, H(O) represents a system of (n - m )  uncoupled 

harmonic oscillator. We denote by x ~ ( 3 )  its eigenfunctions, having collected the harmonic 
oscillator quantum numbers n,,,+l, . . . , n, in the multi-index N = (n,,,+l,. . . , nn). The 
corresponding eigenvalues are given by E(') = xi wi (ni + L) The spectrum is degenerate 
every time the frequencies oi satisfy linear conditions in the integer field. The zeroth-order 
eigenfunctions corresponding to an energy E(') are given by 

@,w, 3 = r$N(-aXN(3) (25) 
and present an infinite degeneracy given by the presence of the arbitrary function of 2, 

2. ' 

r $ ~ ( , ? ) ,  besides that labelled by the multi-index corresponding to the energy E('). 

degenerate states, that is by solving the Schrodinger equation 

XE"+(?) = E'l)r$(?) (26) 
where the Hamiltonian HE" is obtained by bracketing the order E term of P,, H('), between 
the harmonic oscillator states corresponding to E(') and r$(.?) i s , a  vector wavefunction 
having as component the r$"(?) with energy E('). The explicit expression of 'HE" is 

(nap + iA,)gfiYlgl'/2(1a, + iA,) + ~ ( " ( 2 )  + $I)(?) H ,  =-- 

The first-order correction to E"), E( ' ) ,  is obtained by diagonalizing the perturbation on 

(27) 
E" 1 

21gl'r- 

where ( L i j )  and (LijLk[) denote the matrices obtained by bracketing Lij and LijLkr between 
the harmonic oscillator states corresponding to E(O) and P is the identity matrix with the 
dimension of the degenerate space. .HE(' appears as a free Hamiltonian on the constraint's 
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surface coupled with the geometry induced gauge fields (28) and the potentials (18) and 
(29). Equation (26) therefore has to be interpreted as the Schrodinger equation describing 
the effective dynamics induced on the constraint's surface. Note that for a surface 'c 
embedded in the three-dimensional Euclidean space R3 the Hamiltonian (27) reduces to (2). 
The potentials (28) and (29) produces a gauge structure which resembles the geometric 
electromagnetism discussed in the context of the adiabatic approximation [lo]. It is, 
however, important to note that the mechanism producing the coupling with gauge fields 
and quantum potentials in the effective dynamics of a constrained system is distinct from 
that explored by Berry, its origin having to be found in the non-trivial geometry of the 
constraint's surface M .  

Denoting by K the quantum numbers labelling the eigenfunctions of 'HE" and supposing 
the degeneracy to be completely removed, the eigenvalues of €71 are evaluated by means 
of the standard formula 

This allows us to calculate the spectrum of the system with an arbitrary accuracy as a power 
series in the parameter E .  

5. Particle constrained on a circle 

As a very simple, but non-trivial, example we consider a particle constrained to move on a 
circle embedded in R3 by a harmonic potential. This allows us to illustrate some peculiarities 
of constrained quantum-mechanical systems which are systematically ignored in formal 
treatments. Therefore let c : [O,2rrR] + R3, c(x) = (Rcos(x/R), Rsin(x/R),O) be the 
embedding map of the circle in the three-dimensional Euclidean space R3. The curve is 
parametrized by the arc length x ,  so that its tangent, normal and binormal may immediately 
be evaluated as t ( x )  = (-sin(x/R), cos(x/R), 0), n(x) = (cos(x/R), sin(x/R), 0) and 
b(x) = (0,0,1). Every smooth assignment of an orthonormal basis of the normal space to 
c in x may be obtained by rotating the normal and binormal by a point-dependent angle 

n 2 =  coswn+s inw b 
n ' = - s i n w n f c o s w  b 

where w(0) = w(2rrR) + %z, L being an integer. The induced metric, the second 
fundamental form and the normal fundamental form of the embedding read 

gll = 1 

a:, = - cos w 1 1 .  
R R 

' a:, = --sin w 

Af = -w. 

The one-by-one matrix q is written as 11 = (y2/R)cosw - (y3/R)sinw, whereas the 
covariant derivative (19) on c reads ex = a, - iwLB. Direct calculation shows that 
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4~ = 0, so that the whole perturbative expansion (15) may be easily evaluated as 

. .  
The spechum of the system may now be calculated by means of perturbation theory. 
As in the general case the infinite degeneracy of the zeroth-order states is removed by 
solving the Schriidinger equation (26) for the effective dynamics on the constraint's surface. 
In correspondence to the zeroth-order state labelled by the harmonic oscillator quantum 
numbers (nz, n3) the effective Hamiltonian on the circle is written as 

where the angular brackets again denote expectation values between harmonic oscillator 
states corresponding to the energy E(') = 02(nz + i) + w3(n3 + 4). 

Let us now discuss the physical meaning of the function w (x). If the confining potential 
is symmetric, that is m2 = 03, it is possible to choose the harmonic oscillator basis is such 
a way that L23 is diagonal. The effective potential ( ( L i 3 )  -' ( L ~ ) z ) ~ 2 / 2  then vanishes 
identically and (Lz3)u) then appears as a pure gauge field in the theory and may be removed 
by a different choice of normal coordinates y2, y3. The effective dynamics on the circle 
and the.whole perturbative expansion are then considerably simplified. In contrast, if the 
confining potential is not symmetric, wz f 03, (Lu) = 0, (L:) # 0 and a different choice 
of normal coordinates would cause the confining potential to be x-dependent. The effects 
produced by w ( x )  may therefore not be eliminated. Pictorially we may liken our model to 
a particle moving in a ring with a small ellipsoidal section. The function w ( x )  describes 
then how the section wraps up when moving along the ring. If the ring's section reduces 
to a circle (w2 = 03) it then does not matter how the wrapping is done and we can always 
recover the case w = 0. On the contrary   the wrapping produces observable effects when 
the ring's section is not circular (0' # 03). 

As the o2 = o3 case is straightforward, we concentrate on w2 # w3. The effective 
Hamiltonian describing the dynamics on the circle then reduces~to 

Different choices of the wrapping function w ( x )  produce a completely different effective 
dynamics. An arbitrary positive, and everywhere finite, smooth potential may be reproduced 
by a suitable choice of w. 

The simpler case we may consider is that in which the potential wraps us uniformly, say 
z times, w ( x )  = z x / R .  The effective SchrGdinger equation on the circle is then immediately 
solved by $(n,.n,),k(x) = e x p ( i $ x ) / B ,  k any integer, and 
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Finer corrections to the spectrum may be evaluated by going over in perturbation theory. 
As this matter is not particulaxy interesting for this model, examination of the matter is 
postponed to the next example which is physically more significant. The remarkable fact 
we learn from this example is that the realization of the constraint, i.e. the particular form 
of the confining potential Vc, characterizes the spectrum and the effective dynamics of the 
constrained quantum system. Such information is completely lost within a formal treatment 
of the constraint. 

6. Particle constrained on a sphere (the rigid diatom) 

As a second example of a constrained quantum-mechanical system we consider the motion 
of a particle on a sphere embedded in R3. To get some physical grasp of what we are 
dealing with, let us consider a diatom. Apart from effects connected with the geometric 
phase [ll], the effective Hamiltonian describing the rotovibrational degrees of freedom of 
the molecule is written in the adiabatic approximation as 

where T = (x, y, z) is the relative position of the nuclei, /.L the reduced mass of  the system 
and VBO is the Born-Oppenheimer potential. It is usual 'to assume that: 

(i) VBO presents a deep minimum in correspondence of the molecular equilibrium length 
ro. and 

(ii) VBo depends only on the relative distance of the nuclei r = lrl and not on the orientation 
of the molecule in space. 

That is, Vgo behaves as a potential confining &e motion from the rotovibrational 
configuration space R3 to the sphere of radius ro. The Hamiltonian (37) describes therefore 
a constrained quantum-mechanical system in the sense we specified before, cf equation (8). 

In order to adapt coordinates we introduce the usual angles B and q5 parametrizing the 
sphere and the normal coordinate y = ( l / r o ) m ( r  - ro). I = p$j is the moment of 
inertia of the diatom and w the frequency introduced by the Born-Oppenheimer potential 

0 = ~ ( ~ / P ) ( a z v , ~ / a ~ ) i ~ . .  
The dimensionless scaling factor E = R/lw appears naturally in the definition of y once the 
zeroth-order energy hw is factorized from the Hamiltonian. From most diatoms E is a very 
small parameter, E 10-2-10-4, and, as our notation anticipates, gives a measure of the 
rigidity of the molecule. The metric of R3 in the adapted-coordinate frame reads 

/ (1  + P Y Y  0 O \  
0 (1 + d12y)' sin' B 0 
0 0 E 

1 
GIJ = i;z; [ 

while the Born-Oppenheimer potential is written as 

VBO = A @  (iy' f i y 3  +by4 -I-. -.) (39) 

where ri = aR'/2//13/fo5f2 and = bfi/p2w3, a and b being the usual spectroscopic 
parameters. The rigidity parameter f i / l w  therefore plays the role of the parameter E we 
introduced in section 3 for a generic constrainti. A comparison of equation (38) with 

t Note that the normal coordinate y appears as already rescaled. 
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equations (5) and (6) allows us to write down immediately the induced metric and the 
second fundamental form on the sphere as 

and 

As the codimension of the constraint’s surface is one, the normal fundamental form vanishes 
identically. The embedding of the sphere in R3 is standard and the perturbative expansion 
‘ ~ p i w  = ~ ( 0 )  + EH(’) + . . . + ciy3 + 6y4 + . . . is easily evaluated as 

(0) - L ( - a Z  + yz) H - 2  Y 

The zeroth-order Hamiltonian takes ‘into account the vibrational motion of the diatom. 
H(’) is the angular momentum operator describing the effective rotational dynamics as 
that of a spherical top. The rest of the perturbative expansion reproduces Dunham’s 
expansion [lS] of the non-rigid rotor taking into account rotovibmtional interactions. The 
rotovibrational spec& of the diatom therefore finds a very natural interpretation in terms 
of constrained quantum~ mechanics. Having abandoned the classical idea of constraint 
( E  + 0) the rotovibrational structure appears naturally as a consequence of the physical 
structure of the constraint. The algorithm we present in this paper gives an automatic 
way of computing rotovibrational interactions, and may be of use in the analysis of rigid 

, polyatomic molecules [6]. For the moment we conclude by evaluating the spectrum of the 
particle constrained on a sphere. Having introduced creatioddestruction operators relative to 
the normal coordinate, the computation becomes algebraic in nature, and may be performed 
to arbitrary order in perturbation theory by means of computer algebraic manipulation. Here 
we report that the expansion of the energy &n,! to third ordei in perturbation theory is 

&.,l - = (n + i) + € 4  [ I ( I  + I)] + 2; [ I ( I  + I)] (n + i) 
hw 

+ E  3 { g 15 M I  + 111 + 9 [ZV + 111 (n + i)’ - [U + 1)12} 

Replacing the values of E ,  6 and 6, equation (43) reproduces the standard expression for 
the rotovibrational energies of diatoms [16]. 

7. Concluding remarks 

The reduction of the motion of a quantum-mechanical system from its configuration space 
to a submanifold is by no means unique, in the sense that it is impossible to perform this 
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operation by completely disregarding the motion in the directions normal to the constraint’s 
surface. Quantum mechanics is a field theory, after all, and the wavefunction of the system 
keeps on exploring the whole configuration space even if it is squeezed on the constraint’s 
surface. When the system is in an eigenstate of the confining potential we can obtain an 
effective Hamiltonian describing the dynamics on the constraint’s surface. As is clearly 
illustrated by the examples of sections 5 and 6, this effective dynamics, described by .HE”, 
depends both on the specific normal eigenstate and on the explicit form of the confining 
potential. In any case the eigenvalues of the effective Hamiltonian give only the first-order 
corrections to the spectrum of the system at finite E .  An accurate description also requires 
the analysis of the interaction between the motion normal and along the constraint’s surface. 
The perturbative expansion (15) we present in this paper takes this effect into account. 

Taking the limit E + 0 after subtracting the divergent zeroth-order energies of the system 
produces a well defined description of the motion on the constraint’s surface. Nevertheless 
we consider this operation to be artificial, the physical nature of the constraint lying in 
the small but finite. value of E (cf the discussion of the diatom). The whole perturbative 
expansion (15) is therefore necessary to characterize the dynamics of the constrained system. 

Apart from its conceptual importance, the perturbative expansion (15) may be of 
practical importance in the analysis of electrons confined on arbitrary surfaces and wires, as 
well as in the analysis of polyatomic molecular spectra. The effective rotational dynamics 
of some simple polyatomic molecules has already been considered in [6], demonstrating the 
physical relevance of the induced gauge structure and quantum potentials (28), (18) and (29). 
Our hope is that the expansion (15) may serve as an unifying tool in understanding the f i n e  
structure spectra of rigid polyatomic molecules. 
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